TERRAIN: INTRODUCTION

Terrain Grid

The terrain grid is a structure of a height map predefined in the terrain editor (Visitor 3). NOTE: The size of the terrain grid is defined (in vertices) in the variable _landRange.

Terrain Cell

The terrain cell is a square area in the plane with XZ coordinates. Its four corners have heights defined. It contains path planning and ambient sound information, etc.
Each terrain cell stores the object centers and provides collision detection. Only the certain cell and its neighbors can be searched for objects colliding with some geometry. It defines the limitation on object size. NOTE: The size of the terrain cell is defined (in meters) in the variable _landGrid.
Each terrain cell uses a texture material that is defined with a segment of the map texture, a segment of the layer mask, and up to four layer textures.
Each layer texture consists of three maps:

- a color map suffixed with _co (assigned in a *.rvmat file)
- a normal map suffixed with _nopx (assigned in a *.rvmat file)
- a macro map suffixed with _mco (optional, and is directly used the simulation engine)

The macro map adds some noise to the layer texture at large range. The terrain shader uses this to display the surface when the camera is far enough from the layer texture and to display a blend of the layer textures when the camera is closer enough from
On close range the map texture is covered by the layer textures. Each the terrain cell can be covered by a hundred (10×10) of the instances of any layer texture at all. Therefore, actual size of a layer texture dependents on the size of the terrain cell.
Example:
Given the size of the layer texture of 1000×1000 pixels:

- if the terrain cell has the size of 10×10 meters then each the pixel of the layer texture covers 1 millimeter of the terrain cell
- if the terrain cell has the size of 15×15 meters then each the pixel of the layer texture covers 1.5 millimeter of the terrain cell

Terrain Size

The terrain size is defined (in meters) as a result of the multiplication:_landRange \boldsymbol{x} _landGrid.
The terrain size needs to have a value of $\mathbf{2}^{n}$ or of $\mathbf{2}^{n} \mathbf{x 1 0}$. This means that the terrain is a square area. Though the height map should define the _landRange+1 amount of the terrain cells, it only defines the _landRange amount of the vertices and the last vertex is duplicated by the simulation engine.

Satellite Grid

The satellite grid is a set of the terrain cells using the same texture material.
NOTE: The size of the satellite grid has to be divisible by 4.

Texture Overlap

Mapping a segment of the map texture to the satellite grid, involves two problems due to the limitation that the segment size needs to have a value of $\mathbf{2}^{\text {n }}$. Apart from hardware limitations, the reason for this is that mipmaps need to be generated for the textures:

- The first problem is that you have to specify an image resolution (in meters per 1 pixel) so that a number of pixels per the satellite grid have a value of $\mathbf{2}^{\boldsymbol{n}}$.
- The second problem is that bilinear filtering is applied to the texture. Therefore, sizes of texture tend to be $\mathrm{N}+1$ instead of N . This is why there should always be a certain margin to allow all miplevels (power-of-two fractions of N) to access the extra pixel and obtain a seamless mapping for the terrain at all zooms.
The result is that only the center areas of the map texture segments are rendered and the margin areas are copies of the margins of the adjacent segments.
NOTE: This rule also holds for the layer mask.

Example:
Parameters: Terrain Grid = 512x512; Terrain Cell = 15; Image Resolution = $1 \mathrm{~m} / 1$ pix; Segment Size $=512$. You can calculate a size of the satellite grid and of the segment overlap.
The terrain cell should have 15 pixels mapped to it (Image Resolution / Terrain Grid).
At most 32 terrain cells $(480 / 15=32)$ will be rendered in the segment of the map texture.
The rest of the segment $(512-480=32)$ will be the segment overlap.
The overlap of 16 pixels is the default minimum for the Visitor 3.
The size of the satellite grid needs to be divisible by 4. Otherwise, the Visitor 3 would round this size down and increase the segment overlap.
NOTE: The decisions about the segment overlap and the exact mapping parameters (TexGen in the RVMAT) are entirely up to the Visitor 3.
The engine doesn't care about how the layer textures are mapped. It uses the mapping values from the RVMAT.

Terrain Segmentation

The terrain grid is rendered with the satellite grid. Each the satellite grid shares its own segment of the map texture in an exchange buffer.
NOTE: The exchange buffer is processed with a DrawIndexedPrimitive (DIP) call at a time. Therefore, better way is fewer DIP calls per the map frame processed.
When the terrain grid is loaded, the engine checks how many adjacent terrain cells share the same texture material (*.rvmat of the map texture segment) to define the size of the satellite grid (terrain cells) and to divide the terrain grid into the land segments.
NOTE: The land segment is not the satellite grid.
The limitations on an exchange buffer (the DirectX standard):

- the exchange buffer may not contain more than $\underline{32768}$ vertices (that is, a bit more than 181×181)
- the land segment may not be greater than the value of the 32×32 terrain cells

The limitations cause following cases:

- If the satellite grid is greater than/ equal to/ less than the buffer standard (but greater than the land segment), the terrain grid is divided by a size of the land segment into sections.
- If the satellite grid is less than the buffer standard (or this grid is not regular), and this is equal to/less than the land segment, the terrain grid is divided by a size of the satellite grid into sections.
NOTE: Each the section is processed with the DIP call.
Because of the limitations above, optimal size of the satellite grid is equal to the size of the land segment.

Multi-Map

In a multi-map (the several maps are glued together) the satellite grid should be regular. To design the multi-map, choose the tile size of the multi-map to be a multiple of the satellite grid size.
NOTE: This is now easier to do with the non-power-of-two map sizes.

Terrain LOD

The engine uses a level of detail (LOD) algorithm in order to increase the rendering performance for higher view distances.
Each land segment can be generated in up to 7 versions with decreasing the LOD. The first LOD (LOD - 0) contains all vertices of a terrain grid, the second LOD (LOD - 1) contains only every other vertex, and so on. Higher LOD are used for distant land segment. The distance, where the first LOD-switch occurs, depends on the terrain detail setting in the Video Options.
Each vertex knows its own height in any LOD and the height it would have in higher LODs. In fact, the LOD has a fractional value that increases exponentially with the distance from the camera. Each vertex uses a height that is a blend between the nearest LODs.

The sample size of a terrain (for the Satellite Image Resolution value of $1 \mathrm{~m} / 1 \mathrm{pix}$)

Terrain Grid, v	Terrain Cell, m	Terrain Size, m	Segment Size, m	Segment Overlap, m	Satellite Grid, cells	Segments per terrain
64	15	960	512	32	32×32	4
128	15	1920	512	32	32×32	16
256	15	3840	512	32	32×32	64
512	15	7680	512	32	32×32	256
1024	15	15360	512	32	32×32	1024
2048^{*}	15	30720	512	32	32×32	4096
4096^{*}	15	61480	512	32	32×32	16384

*not recommended for use
Example: the terrain Chernarus

Terrain Grid, vertexes	Terrain Cell, m	Terrain Size, m	Segment Size, m	Segment Overlap, m	Satellite Grid, cells	Segments per terrain
2048	7.50	15360	512	32	64×64	1024

Release: 10.15.2014
Update: 12.27.2015
Publisher: http://vied-arma.ucoz.com/

