
ARMA3 HEADLESS CLIENT GUIDE

for mission creators & server admins

by: Monsoon

rweezera@hotmail.com

February 10, 2015

mailto:rweezera@hotmail.com

Contents

1 Introduction 1

1.1 What is a headless client? . 1

1.2 When should you use a headless client? . 1

2 Mission design 2

2.1 Adding a headless client to your mission . 3

2.2 Spawning units . 4

2.2.1 Determining where to spawn units . 4

2.2.2 via Script . 5

2.2.3 Editor-placed . 6

2.2.4 via DAC . 8

2.2.5 Transferring after mission start . 10

2.3 Additional considerations . 11

2.4 Summary . 12

3 Preparing your server for headless clients 12

4 Starting & connecting a headless client 13

4.1 Windows . 13

4.2 Linux . 13

5 Closing thoughts 14

6 References & helpful links 15

1 Introduction

As most of you already know, Arma is a very CPU (central processing unit) intensive game.

There are a number of things going on during a session that requires the CPU’s attention.

Unfortunately, the CPU cannot do more than a handful of calculations at any point in time,

resulting in a potential bottleneck for massive games like Arma.

Missions that have a substantial amount of AI (artificial intelligence), objects, or scripts

can result in degraded server performance. When the server runs poorly the server must

prioritize its tasks, which means that sacrifices will be made. One of the first things to go

is the AI. They often become ‘potatoes’ in the sense that their reaction times are severely

diminished. This ultimately leads to a poor experience for the player as the challenge evap-

orates. In addition to the poorly performing AI, user scripts and mod performance begin to

break down and cause tremendous amounts of lag as the server tries to play catch up. The

headless client is something that Bohemia Interactive introduced a number of years back to

potentially mitigate this problem.

In this guide I attempt to outline the general concepts and ideas surrounding the headless

client, or HC. My goal is to provide a base knowledge needed to build support for a HC within

your very own Arma3 missions.

1.1 What is a headless client?

When an Arma mission is launched, there are two types of entities involved: the server, and

the client. A client in this context is defined as any computer that is not the server. When

you and your friends connect to an Arma mission, your computers all become clients.

The term ‘headless’ simply refers to a lack of an interface. Servers without monitors for

instance, are considered to be headless. A headless client therefore is just a computer that

connects to a server (client), but lacks any sort of interface and is therefore headless. The

next natural question is: what purpose could this serve for an Arma mission?

As I mentioned above, the HC is a way to mitigate the problem of poor server performance

when under heavy load. The general idea is to offload the AI from the server to a client.

That client can then handle the AI calculations without the additional burden of network

synchronization etc. This typically results in much more responsive, more human like AI,

along with less server lag. The improved responsiveness was well demonstrated by Dslyecxi1.

1.2 When should you use a headless client?

The easiest way to tell if your mission would benefit from a headless client is to monitor

server performance during a play through. While logged in as admin to your server, open

chat and execute the command:

#monitor 10

1http://youtu.be/4RUkh5GO1Cg

1

http://youtu.be/4RUkh5GO1Cg

This will begin spouting server performance information in the lower left of your screen every

10 seconds (you can change this frequency by changing 10 in the command to a different

value, and a value of zero disables the output). Within this information you will see an

FPS (frame per second) value. This measures how well the server is performing and has

nothing to do with any sort of rendering. Values of FPS ≥ 35 are generally considered good

performance, while FPS ≤ 15 is poor performance. Obviously the higher the value, the

better. If at any point during your mission you are consistently getting low FPS values, then

you may want to consider implementing a headless client.

However, one can benefit from a headless client at any time. Even in missions that

perform well, a HC can improve AI responsiveness and make the experience more challenging

for those involved. It is for this reason that I recommend building your missions to work

with or without headless clients. This takes a little planning and finesse, and will be covered

more in depth in Section 2.

One last thing we must consider before proceeding is where will the HC be in relation to

the server? With the HC being in control of the AI we must consider the headless client’s

ping in relation to the server. Ideally you want the lowest ping possible; many run their

headless client’s on the same network or in the same datacenter as their servers for this very

reason. But above all else, test, test, and test some more! You may be perfectly satisfied

with a 100ms ping HC.

2 Mission design

Before we can begin to discuss how to implement a headless client into your mission, we

must first briefly discuss the concept of ownership in Arma. All units and objects (that are

not part of the map) are owned by someone. Typically that someone is the server, but in

some cases they may be owned by clients. Vehicles for instance, are owned by their driver.

If you place an empty vehicle down in the editor it is initially owned by the server. Once

you hop in the drivers seat, ownership is transferred to your computer, and remains there

until you disconnect (ownership transferred back to the server), or someone else gets in as

the driver (ownership transferred to the new driver). Killzone Kid has some great tutorials 2

on locality I highly recommend if you are interested in learning more about this.

The point is, in order for the HC to take responsibility for any AI calculations, it must

first own the AI. The most effective way to accomplish this is having the HC spawn

AI via a script. It is possible to transfer ownership of units to the HC after the mission

starts, but there are additional complications that come with this that I will discuss in

Section 2.2.5.

2http://killzonekid.com/arma-scripting-tutorials-locality/

2

http://killzonekid.com/arma-scripting-tutorials-locality/

2.1 Adding a headless client to your mission

First we need to place a headless client virtual identity. In the editor place a new unit and

select SIDE:Game Logic, CLASS:Virtual Entities, UNIT:Headless Client (see Figure 1).

Figure 1: Headless client placement within the Arma3 editor. It is important to make the
unit playable, and give it a name.

To allow for the HC to actually connect, you will need to set CONTROL:Playable. Next

you will need to name the unit; the reasoning will become apparent in the following sections.

Since Arma3 supports multiple headless clients, I chose to name mine ‘HC1’. Once the unit

is placed, the module in the editor should resemble Figure 2.

Figure 2: Headless client module in the editor when configured correctly. Notice the purple
circle indicating that the unit is set as ‘Playable’.

3

Once placed, a headless client connecting to this mission will automatically be assigned

to the proper role in the mission lobby. However, only the current server admin will be able

to see the HC.

2.2 Spawning units

2.2.1 Determining where to spawn units

I believe it is important to make your mission as dynamic as possible. That means ensuring

that it works in situations with & without a headless client. To do that, we must figure out

where to spawn our units. When the headless client is present we will spawn units on it, but

in the absence of a HC we still want our mission to function, so we will spawn them on the

server.

Now remember how we named our unit HC1 in the previous section? We can use the

command isNil 3 to determine if that spot is actually occupied on mission launch. This will

tell us if the HC is present or not, and allow us to spawn the units in the correct place. The

following code snippet should be placed into your init.sqf 4 so that it executes on all clients

and the server. After the jump I will take you through what is happening here.

1 // de f i n e func t i on to spawn un i t s
2 spawnUnits = {
3 // r e gu l a r spawn method
4 [] execVM ” spawn viaScr ipt . s q f ” ;
5 [] execVM ” spawn EditorPlaced . s q f ” ;
6
7 //DAC spawning
8 [] execVM ”DAC\DAC Config Creator . s q f ” ;
9 [] execVM ”spawn viaDAC . sq f ” ;
10 True
11 } ;
12
13 // check i f HC1 i s pre sent
14 HC1Present = i f (i s N i l ”HC1”) then{False } e l s e {True } ;
15
16 //spawn un i t s on HC1 i f pre s ent
17 i f (HC1Present && i sMu l t i p l ay e r) then{
18 i f (! i s S e r v e r && ! ha s I n t e r f a c e) then{
19 [] c a l l spawnUnits ;
20 } ;
21 }
22
23 // otherwi s e spawn un i t s on the s e r v e r
24 e l s e {
25 i f (i s S e r v e r) then{
26 [] c a l l spawnUnits ;
27 } ;
28 } ;

3https://community.bistudio.com/wiki/isNil
4https://community.bistudio.com/wiki/Event_Scripts

4

https://community.bistudio.com/wiki/isNil
https://community.bistudio.com/wiki/Event_Scripts

Lines 2-11

Here we define a function that will be responsible for spawning our units. It will be

called by either the server or the headless client, not both. The content of each of

these scripts will be discussed in the following sections.

Line 14

Here we check to see if the variable HC1 is defined in the mission namespace, meaning

that the unit is present. If it is defined, then HC1Present=True, otherwise HC1Present=False.

This variable will be used to determine where to spawn the units within the next if()

statement.

*Note: this unit will always be present in single player mode.

Lines 17-21

Here we check the value of HC1Present and isMultiplayer5. If it both are true then a

headless is client present. Remember that every client and the server will execute this

code; in order to spawn AI only on the HC we must first check two variables: isServer 6

& hasInterface 7. If both of these variables are false (notice the !), then we are dealing

with the headless client and we call the spawnUnits function. All other clients and

the server will bypass this function call because either isServer or hasInterface will be

true.

*Note: if the isMultiplayer check is not performed here then the mission will always

think that a headless client is present in single player mode and the spawnUnits

function will never be called.

Lines 24-28

If HC1Present or isMultiplayer comes back false, that means we have no headless client

present, and this section of the code will execute. The goal now is to spawn the AI only

on the server. To accomplish this, we simply check if the variable isServer 6 is true,

then we allow for the spawnUnits function to be called. This call will not happen on

any non-hosting client because isServer will be false.

2.2.2 via Script

Let’s take a look at how to spawn a small patrol via a script that will be executed on either

a HC or the server. In order to spawn a squad we only need a starting location; my preferred

method of defining this position is by an editor-placed marker. Pick where you want your

patrol to start, and place an empty marker named ”Patrol1”. Now create a new file called

spawn viaScript.sqf in your mission’s root directory and copy the following code:

5https://community.bistudio.com/wiki/isMultiplayer
6https://community.bistudio.com/wiki/isServer
7https://community.bistudio.com/wiki/hasInterface

5

https://community.bistudio.com/wiki/isMultiplayer
https://community.bistudio.com/wiki/isServer
https://community.bistudio.com/wiki/hasInterface

1 pos = getMarkerPos ”Patro l1 ” ;
2 cfgGroup = c on f i gF i l e >> ”CfgGroups” >> ”West” >> ”BLU F” >> ” In fan t ry ” >>
3 ”BUS SniperTeam” ;
4 group = [pos , WEST, cfgGroup] c a l l BIS fnc spawnGroup ;
5 [group , pos , 100] c a l l B IS fnc ta skPat ro l ;

(where lines 2&3 should be on a single line). Here we are first getting the coordinates

of marker ”Patrol1”, then temporarily storing the group name from the config file (can

access this from the editor’s Config Viewer). Next (line 4) we create the group via the

BIS fnc spawnGroup8 command. Last but not least, we tell the group to execute a patrol

of radius 100m via the BIS fnc taskPatrol9 command. Whoever executes this code (server

or HC) will own the AI.

2.2.3 Editor-placed

Note that this section can be a tad overwhelming. Please remember to take your time, think

things through, and refer to the sample mission for clarification.

Let’s place some units down in the editor, and give them a set of waypoints. For this

example I threw down a recon patrol and setup 4 waypoints with the last being of type

CYCLE.

Figure 3: test

To spawn these units on either the server or HC, we must first get them into script form.

8https://community.bistudio.com/wiki/BIS_fnc_spawnGroup
9https://community.bistudio.com/wiki/BIS_fnc_taskPatrol

6

https://community.bistudio.com/wiki/BIS_fnc_spawnGroup
https://community.bistudio.com/wiki/BIS_fnc_taskPatrol

This is most easily accomplished with the help of a program called A2MC10. This little utility

takes your mission.sqm file (this file holds all of the information for what you placed in the

editor), and converts it into an .sqf file that we can safely modify.

Open A2MC, and point it to your mission.sqm file like I show in Figure 4.

Figure 4: test

hit open and it should immediately bring up the save dialog as shown in Figure 5.

Figure 5: test

Now enter the file name spawn EditorPlaced.sqf and hit save. When you open this file in

a text editor, it will be composed of 4 main sections that are clearly marked:

10http://www.armaholic.com/page.php?id=18012

7

http://www.armaholic.com/page.php?id=18012

1. MARKER CREATION

2. EMPTY VEHICLE CREATION

3. UNIT CREATION

4. TRIGGER CREATION

Because our mission is so simple at this point, we can easily filter out what we do not need.

The resulting file will contain ALL editor placed objects including units, waypoints, and

triggers. We want to narrow down what is included in this file to only our Recon Patrol

group and their waypoints. The first step is eliminating the parts that we do not need such as

marker, empty vehicle, and trigger creation. Anything under each of these categories is safe

to delete, BUT make sure you keep the last line that reads [createdUnits, createdMarkers,

createdTriggers]!

Now all we have left is under UNIT CREATION. Take a look at what this is doing; it first

creates a group with the createGroup command, then creates the actual unit and sets the

unit properties. If we continue to scroll down, you should notice a line that says ”Waypoints

for group group west 2”, and they should be the only waypoints present. This means that

the group we should be concerned with is called group west 2 throughout the script. All

units that do not belong to this group, should be deleted as we will be keeping them in the

editor and do not want to duplicate them.

But which units are not a part of that group? If you look closely, it’s the first two. The

first is likely the player unit, while the second is the HC unit. Delete the two units between

the bottom of UNIT CREATION, and ”// group group west 2” and we should be set to go.

We can now delete our Recon Patrol and their respective waypoints in the editor - remember

they will be spawned via this script!

2.2.4 via DAC

Dynamic-AI-Creator, or DAC11, is an excellent way to create a more dynamic and flexible

mission. It basically involves placing down AI ‘zones’ which will spawn a specified number

of units within said zone. There are numerous options and benefits to using DAC that I

cannot cover here; I highly suggest you take a look at the documentation to learn more.

*Note: DAC from the web is not compatible with headless clients as it was

not designed with it in mind. I recommend you copy the DAC folder from

the example mission included in this tutorial as I have performed the necessary

modifications for you.

To take a DAC zone and convert it to script we will follow a procedure very similar to

what was done in Section 2.2.3. First we will place a DAC trigger zone in the editor as

is shown in Figure 6. To understand what is going on you will need to reference the DAC

11http://www.armaholic.com/page.php?id=25550

8

http://www.armaholic.com/page.php?id=25550

documentation, but ensure that the trigger name matches the name passed to the DAC Zone

function in the ON ACT box of the trigger. Once the zone is placed feel free to experiment

in the editor to make sure that things are spawning properly on the server.

Figure 6: Setting up a DAC zone. We set the condition to a time greater than 5, this is
just to add a short delay before DAC initializes. Notice the name of the trigger matches the
name we pass to the DAC Zone function in the trigger activation. For more details on how
to spawn DAC zones please see the DAC documentation.

Next we will convert this zone to a script using A2MC following the exact same procedure

described in Section 2.2.3. The difference here will be that we will only concern ourselves

with the DAC zones in the TRIGGER CREATION section of the script output by A2MC.

Basically, you want to filter through the file and delete all markers, vehicles, units, and

triggers that are not DAC related. One major difference however, is that triggers converted

via A2MC have an extra set of quotation marks for the CONDITION field of the trigger

which causes these triggers not to fire. To resolve this you will need to modify each trigger’s

setTriggerStatements command and remove the extra set of quotation marks. Notice the

difference in these two lines:

1 z1 se tTr iggerStatements [”” time > 5”” , ” nu l l= [””z1”” , . . .
2 z1 se tTr iggerStatements [” time > 5” , ” nu l l= [””z1”” , . . .

Line 1 is directly from A2MC, and Line 2 is the correction with the extra set of quotes

removed from around the time > 5 statement.

With the trigger CONDITION statement fixed, we can go back into the editor and

disable the in-game trigger from firing. Keeping it around is ideal since it is a source of

9

visual feedback in the editor, and will allow for easy changes in the future (edit the trigger,

re-do the A2MC procedure). To disable the trigger from firing, we simply add ‘&& false’ to

the trigger’s CONDITION statement as shown in Figure 7:

Figure 7: By adding the ‘&& false‘ the trigger will no longer fire - this is a desired behavior
because our script is now creating this trigger on either the server or HC. Keeping the trigger
around however, is useful for visual purposes.

To make sure this new script from A2MC gets executed name it spawn viaDAC.sqf and

place it in your mission’s root directory. Since our unit spawning function within init.sqf

(Section 2.2.1) already includes a call to this script, it should be executed on mission launch.

2.2.5 Transferring after mission start

Transferring units to the headless client after mission start means that you can leave them

in the editor. This is not the preferred way of doing things, mainly because these units will

lose any waypoints, behaviors, or objects synchronized to them in the transfer. Nevertheless,

this can sometimes be helpful for specific units such as as those manually placed in a guard

tower.

To transfer units to the headless client one only needs to know the client ID of the

headless client. This is accomplished by having the server execute the owner12 command.

The next step depends on which version of Arma3 you are running; currently any version

< 1.4 requires the setOwner13 command, while versions ≥ 1.4 will switch to using the

12https://community.bistudio.com/wiki/owner
13https://community.bistudio.com/wiki/setOwner

10

https://community.bistudio.com/wiki/owner
https://community.bistudio.com/wiki/setOwner

setGroupOwner14 command. See the HC development thread15 on BI’s forums for further

details.

To make things easier, I have included a script called moveToHC.sqf with the included

tutorial mission. The basic premise is to have each unit you would like transferred execute

a script that transfers ownership, which looks something like this:

1 i f (! i s S e r v e r) exitWith {} ; // only run on the s e r v e r !
2 i f (! i sMu l t i p l a y e r) exitWith {} ; // only run in MP environment !
3
4 un i t = t h i s s e l e c t 0 ; // f i r s t passed va r i ab l e i s the un i t
5 HC = t h i s s e l e c t 1 ; // second passed va r i ab l e i s the HC name (HC1 here)
6
7 i f (i s N i l format [”%1” , HC]) exitWith {} ; // only run i f HC1 i s pre sent
8
9 HCid = owner HC ; // get HC c l i e n t ID
10 unitGroup = group un i t ; // get un i t ’ s group
11
12 // setOwner f o r v e r s i on s < 1 .4
13 { x setOwner HCid ; } forEach (un i t s unitGroup) ;
14
15 //setGroupOwner f o r v e r s i on s >= 1.4
16 unitGroup setGroupOwner HCid ;

Place the following in each unit or group leader’s INITIALIZATION box:

nu l l = [th i s ,HC1] execVM ”moveToHC. sq f ” ;

You should only allow either Line 11 or Line 16 to execute depending on which version of

Arma3 you are running, not both. This means comment one of them out! Remember that

all waypoints, behaviors, and synchronized objects will be lost in the transfer.

2.3 Additional considerations

There are a few additional nuances that one must consider when designing a headless client

compatible mission:

• playableUnits16 (multiplayer) & switchableUnits17 (single player) will both return arrays

that include the headless client if present.

• Any scripts that alter the behavior of the AI (such as TPWCAS18) should be executed

on both the server & the headless client.

• You do not have to transfer every unit to the headless client. Striking a balance here

is key.

14https://community.bistudio.com/wiki/setGroupOwner
15http://goo.gl/pWWIxh
16https://community.bistudio.com/wiki/playableUnits
17https://community.bistudio.com/wiki/switchableUnits
18http://www.armaholic.com/page.php?id=19467

11

https://community.bistudio.com/wiki/setGroupOwner
http://goo.gl/pWWIxh
https://community.bistudio.com/wiki/playableUnits
https://community.bistudio.com/wiki/switchableUnits
http://www.armaholic.com/page.php?id=19467

2.4 Summary

• Spawning units via script allows for the most flexibility in where your units are spawned

(Section 2.2.1).

• HC compatible missions should ideally work with or without the HC present.

• Spawn scripts can be created manually (Section 2.2.2), or generated with A2MC (Sec-

tions 2.2.3 & 2.2.4).

• Units can be moved to the HC after mission start (Section 2.2.5) at the cost of losing

all waypoints, behaviors, and synchronized objects.

• Multiple headless clients are supported by Arma3. The ideas and methods here can

easily be extended to support multiple HCs.

• hasInterface is only False for dedicated servers and headless clients - all other systems

will return True for this variable.

3 Preparing your server for headless clients

Servers are not configured by default to allow HCs to connect. You must make minor

modifications to the server configuration in order to allow for their connection, and allow

for unlimited bandwidth throughput. This is done by adding the HC’s IP address to the

server.cfg file like so:

head l e s sC l i e n t s []={ ”xxx . xxx . xxx . xxx” } ;
l o c a lC l i e n t []={ xxx . xxx . xxx . xxx } ;

Note however, that you need to replace ‘xxx.xxx.xxx.xxx’ with the actual IP address of your

headless client! Multiple headless clients and/or multiple IP addresses are also supported;

see the BI wiki for further information19.

19https://community.bistudio.com/wiki/Arma_3_Headless_Client

12

https://community.bistudio.com/wiki/Arma_3_Headless_Client

4 Starting & connecting a headless client

In this section we will cover how to start and connect your HC to the server. This is done

through either the ‘arma3’ or ‘arma3server’ executable. The basic premise is to add the

following parameters to the executable:

• -client

• -connect=xxx.xxx.xxx.xxx

• -port=xxxx

Next I’ll go into a bit more detail on how to launch the HC on both a Windows & Linux

machine.

4.1 Windows

To launch a HC on your windows machine with MOD support you’ll likely want to create

a new batch file. You can do this within the confines of a shortcut, but if you have a good

number of mods you will not be able to fit them all. We are going to create a batch20 file

instead.

Start by creating a new text file and name it startHC.bat. This batch file is essentially a

shortcut, saving you the time of typing it all in the command line manually execute. Here’s

an example from my machine:

1 cd /D ”D:\Games\Steam\ steamapps\common\Arma 3”
2 ”D:\Games\Steam\ steamapps\common\Arma 3\ arma3server . exe ” −c l i e n t
3 −connect =127 .0 .0 .1 −port=2302 −password=password
4 −mod=@cup ; @al l inarmater ra inpack ; @asdg jr ; @ ta sk f o r c e r ad i o ;

Line 1 changes your working director to the location of the arma3server executable. Since this

is MY directory, you will need to modify this to point to YOUR Arma3 directory. Lines 2,

3, & 4 are actually one line (I just couldn’t fit them all in one line for this document). It is

responsible for actually executing the headless client command. You’ll notice I include the

-client, -connect, -port, and the -password commands. These values will need to be changed

accordingly to allow the HC to connect to YOUR server. Also make sure to modify the -mod

line to include the appropriate mods!

Once the file is edited and saved, double click on startHC.bat to start the headless client.

4.2 Linux

Launching the HC on linux is very similar to windows, except better (I am biased). First

you’ll need the arma3server executable. To get this, I recommend following the linux instal-

lation instructions on BI’s wiki21.
20http://en.wikipedia.org/wiki/Batch_file
21https://community.bistudio.com/wiki/Arma_3_Dedicated_Server

13

http://en.wikipedia.org/wiki/Batch_file
https://community.bistudio.com/wiki/Arma_3_Dedicated_Server

Once you have all of that straightened out, you can create a new bash22 script for

startHC.sh with the following contents:

1 #!/ bin /bash
2
3 # de f i n e d i r e c t o r i e s
4 HOME=/home/bob/ l o c a l /A3DS
5 A3DIR=$HOME/arma3
6
7 # setup mods
8 MODS=””
9 MODS+=”@cup ; ”
10 MODS+=”@al l inarmater ra inpack ; ”
11 MODS+=”@asdg jr ; ”
12 MODS+=”@ta sk f o r c e r ad i o ; ”
13
14 # execute
15 cd $A3DIR
16 . / arma3server −c l i e n t −connect =127 .0 .0 .1 −port=2302 −pass=password −mod=$MODS

Once again you will notice I include the -client, -connect, -port, & -pass parameters exactly

like the windows batch file. This particular bash script is tailored to my system; to get this

up and running on your box you will need to modify Line 4 (home directory), Line 5 (arma3

directory), the individual MODS you would like to include ($MOD variable), along with the

IP/port/password for the server you are connecting to.

Before you can execute this script you will need to give it executable permissions. Open

a terminal and change directory to where the script is located, then give permissions via:

chmod +x startHC . sh

now execute with:

. / startHC . sh

to start the headless client (keep the terminal window open!).

5 Closing thoughts

Be it creating a new mission, or retrofitting an old mission, implementing a headless client

should be relatively straight forward with the tools and ideas presented here. The technology

is constantly being developed by BI so keep an eye on the BI headless client dev thread23 for

the latest changes. I will do my best to keep this document updated as the game evolves,

but by and large the concepts should remain the same. Enjoy!

22http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
23http://goo.gl/pWWIxh

14

http://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
http://goo.gl/pWWIxh

6 References & helpful links

• BI Wiki: https://community.bistudio.com/wiki/Main_Page

• BI Forums: http://forums.bistudio.com/forum.php

• HC forum thread: http://goo.gl/pWWIxh

• Killzone Kid: http://killzonekid.com/

• Armaholic: http://www.armaholic.com/

• Dslyecxi: http://dslyecxi.com/

• DAC: http://www.armaholic.com/page.php?id=25550

• A2MC: http://www.armaholic.com/page.php?id=18012

• Cover photo: http://cdn.neatorama.com/jill/Headless-Horseman_55646-l.jpg

15

https://community.bistudio.com/wiki/Main_Page
http://forums.bistudio.com/forum.php
http://goo.gl/pWWIxh
http://killzonekid.com/
http://www.armaholic.com/
http://dslyecxi.com/
http://www.armaholic.com/page.php?id=25550
http://www.armaholic.com/page.php?id=18012
http://cdn.neatorama.com/jill/Headless-Horseman_55646-l.jpg

	Introduction
	What is a headless client?
	When should you use a headless client?

	Mission design
	Adding a headless client to your mission
	Spawning units
	Determining where to spawn units
	via Script
	Editor-placed
	via DAC
	Transferring after mission start

	Additional considerations
	Summary

	Preparing your server for headless clients
	Starting & connecting a headless client
	Windows
	Linux

	Closing thoughts
	References & helpful links

