
Master

BI STUDIO: BASICS OF SCRIPTING

INTRODUCTION

Scripting is the main way for:

• Creating new game functionality.

• Controlling timelines, events, dialogs, cut-scenes, etc.

NOTE:

• Scripts can be edited with a simply text editor (e.g. MS Notepad).

• If special characters are used outside of the ASCII, the script may be encoded as UTF-8.

• All text editors have an Encoding option for saving a file.

NOTE: Game engines of the BI Studio are written with the C++. Therefore, the scripting language is based

on the C++. Learning the C or C++ is useful for understanding this.

Some principles of the scripting:

• The purpose of the scripting is to run your game features that cannot be done otherwise.

• Players will use your game features.

• Your game features can be implemented with scripting.

NOTE: Scripts use system resources, therefore they affect hardware performance.

SOME DEFINITIONS

Signs:

• ampersand (&) used for a comparing operation AND (&&)

• semicolon (;) used for:

o beginning a comment in the SQS syntax

o ending a statement in the SQF syntax

• colon (:) used for:

o the arithmetic “if” (?:) in the SQS syntax

o a case label within the switch control structure

• hesh (#) used for a label in the SQS syntax

• exclamation (!) used for inversing a function result

• hyphen (-) used as the unary and binary minus

• tilde (~) used for absolute timing in the SQS syntax

• at (@) used for conditional timing in the SQS syntax

Editor Entities:

• A Unit is a manned entity controlled by either artificial intelligence (AI) or a player.

• A Vehicle is a mobile unmanned (empty) entity that can be controlled by both AI and a player.

• A Object is a static unmanned (empty) entity that can be controlled by both AI and a player

Common terms:

• Scripting is writing of scripts.

• A script is a program piece functionally completed.

• A program is a set of instructions ordered by syntax.

• Syntax is an order of writing program expressions.

SYNTAX

The proprietary scripting syntaxes by the BI Studio:

• SQS is single-line based syntax. This means a statement cannot span over multiple lines.

NOTE: The SQS is introduced in the Operation Flashpoint (OFP) and in the VBS1 (from the BI Sim).

• SQF is multi-line based syntax. This means a statement can span over multiple lines.

NOTE: The SQF is introduced in the Armed Assault (ArmA 1) and in the VBS2 v.1x.

NOTE: You can use both of these.

Constructs:

• A block is a kind of a statement as sequence of statements delimited by curly braces {}.

NOTE: The empty block may be useful for expressing that nothing is to be done.

• A Control Structure (see below)

• A Expression (see below)

• An Identifier (see below)

• An Operand (see below)

• An Operator (see below)

• A Statement (see below)

SQS Features

Binding

Example Description

STATEMENT1

STATEMENT2

The SQS statements are separated by line-breaks.

NOTE: The SQS statements can be separated in-line by comma (,):

STATEMENT1, STATEMENT2

{STATEMENT1, STATEMENT2} The SQS block-statement can be only placed on the single line.

Comment

SQS comment can begin with:

Semicolon Command

; it is a SQS-style comment comment "It is a SQS-style comment”

NOTE: This was introduced in the Operation

Flashpoint: Resistance v1.85.

Constructs

See the Control Structures below.

Special Structures

#Label

Example Description

#Label1

CODE

goto "Label1"

You can define a label and use the goto command to jump back to the label.

Conditional Expression

Example Description

? CONDITION: STATEMENT1, STATEMENT2 You can query a condition for executing the code.

NOTE: The “?:” means an arithmetic if.

Other SQS Features:

• The SQS syntax has the goto command.

• The SQS syntax cannot return a result of a called script back to the calling script.

• Due to the single-line-based SQS syntax, it is not possible to create multi-line string constants. To

overcome this, you have to store the constants in separate *.sqf files and load them using loadFile

or preprocessFile command.

NOTE: The preprocessFile command uses C-style preprocessor, this means you can use both the //

and /* */ comments and also #define macros.

SQF Features

Binding

Example Description

STATEMENT1;

STATEMENT2;

SQF statements are separated by semicolon (;).

NOTE: The line-breaks cannot be used for ending the statements.

{

 STATEMENT1;

 STATEMENT2;

}

The SQF block-statement can span through multiple lines.

Comment

Example Description

comment "It is SQF-style

 comment";

A SQF comment begins with the comment

command, and can span through multiple lines:

NOTE: You can use C-style comments:

// the line C-style comment /*the block

C-style comment*/

Constructs

See the Control Structures below.

Other SQF Features:

• The SQF syntax has the else statement.

• A statement can span through multiple lines if it is enclosed by brackets [].

• The SQF syntax can return a result of a called script back to the calling script.

SQS vs SQF

Comment

SQS SQF

; a comment

comment "a comment”

comment "a comment”;

//in-line C-style comment

/*block

C-style comment*/

Waiting

SQS SQF

@CONDITION waitUntil {if (CONDITION) exitWith {true};

 false};

Timing

SQS SQF

~TIME ; time in seconds sleep TIME; // time in seconds

Single-Condition

SQS SQF

? CONDITION: CODE if (CONDITION) then {CODE};

Multi-Condition

SQS SQF

?CONDITION: goto "SKIP"

CODE2

goto "END"

#SKIP

CODE1

#END

if (CONDITION) then {CODE1} else {CODE2};

Structured Condition

SQS SQF

? CONDITION1: goto "SKIP1"

? CONDITION2: goto "SKIP2"

; DEFAULT

CODE3

goto "END"

#SKIP1

CODE1

goto "END"

#SKIP2

CODE2

goto "END"

#END

switch (VARIABLE) do

{

 case CONDITION1: {CODE1};

 case CONDITION2: {CODE2};

 default {CODE3};

};

While-Iteration

SQS SQF

#ITERATION

CODE

?CONDITION: goto "ITERATION"

while {CONDITION} do {CODE};

Step-Iteration

SQS SQF

_n = 0

#ITERATION

CODE

_n = _n + 1

?_n < COUNT: goto "ITERATION"

for [{_n = 0},{_n < COUNT},{_n = _n+1}] do {CODE};

Alternative syntax:

for "_n" from 0 to COUNT step VALUE do {CODE};

Exiting

SQS SQF

? CONDITION: goto "Exit"

CODE2

goto "END"

#Exit

CODE1

Exit

#END

if (CONDITION) exitWith {CODE1};

CODE2;

SCRIPT

A script is a functionally completed code that performs a specific task. It can be accessed as a function.

The Function Types:

• A void function is used for process where a timing is important (i.e. controlling the actions).

• A value function is used for process where a result is important.

A function can accept parameters and return a result (a return value) or a handle back to a caller.

One function can be shared by multiple callers.

Executing Commands

COMMAND: exec

Introduced in: Operation Flashpoint (OFP) v1.00

Compilation: A *.sqs script is compiled internally.

Execution: It executes a SQS-syntax script.

NOTE: Within the script, the reserved local variable _time contains the time in seconds elapsed since the

script started.

Alternative: The execVM with SQF syntax.

Syntax: [arguments] exec script

Parameters:

• arguments (optional): Any Value passed into the script via the magic variable _this as an Array.

• script: String - a name of the script.

It should be given relatively to:

o a mission folder \scripts

o a campaign subfolder \scripts

o a global folder \scripts

NOTE: It is searched there in the same order.

If this is referred to a script packed together with an addon, the path should be "\<addon>\script.sqs".

NOTE: The <addon> means the name of the *.pbo file without extension.

Return: Nothing

Example:

[player, jeep] exec "getin.sqs"

NOTE:

• The exec starts a new thread for a called script, and does not wait for it to finish.

• The exec returns nothing from the called script back to a caller.

Example:

• Content of VoidFnc.sqs:

hint “Sentence1”;

• Executing the VoidFnc.sqs:

[] exec “VoidFnc.sqs”;

hint “Sentence2”;

• Output would be:

Sentence2

Sentence1

COMMAND: call

Introduced in: Operation Flashpoint: Resistance (OFPR) v1.85

Compilation:

• A *.sqs script is compiled internally.

• A *.sqf script must be precompiled via the expressions:

o compile preProcessFile

o compile preprocessFileLineNumbers

Execution: It executes the SQS-/SQF-syntax script.

Alternative: No

Syntax:

[arguments] call {code}

[arguments] call variable // the code is precompiled and saved into the variable else anywhere

Parameters:

• arguments (optional): Any Value passed into the script via the magic variable _this as an Array.

• code: Code or a called script returned via the commands loadFile (SQS) or preProcessFile (SQF).

Return: Anything - a last value from the called script.

Examples:

SQS SQF

_LastValue = [] call {"x = 3"} ; the code _LastValue = [] call compile {"x = 3"}; // the code

_n = 3 ; the variable

_LastValue = [] call _n; the result is 3

_n = 3; // the variable

[] call compile _n; // the result is 3

_CalledScript = loadFile "script.sqs"

_LastValue = [] call _CalledScript

_CalledScript = compile preProcessFile "script.sqf";

_LastValue = [] call _CalledScript;

NOTE:

• The call does not start a new thread for the called script, and waits for it to finish.

• The call returns a last value from the called script back to the caller.

Example:

• Content of ValueFnc.sqf:

hint “Sentence1”;

• Executing the ValueFnc.sqf:

SQS SQF

_Sentence1 = [] call loadFile “ValueFnc.sqf”

hint “Sentence2”

_Sentence1 = [] call compile preProcessFile “ValueFnc.sqf”;

hint “Sentence2”;

• Output would be:

Sentence1

Sentence2

COMMAND: execVM

Introduced in: Armed Assault (ArmA 1) v1.00

Compilation: A *.sqf script is compiled internally via the preprocessFileLineNumbers command.

Execution: It executes a SQF-syntax script.

Alternative: The exec with SQS syntax.

Syntax: [arguments] execVM script

Parameters:

• arguments (optional): Any Value passed into the script via the magic variable _this as an Array.

• script: String - a name of the script.

It should be given relatively to:

o a mission folder \scripts

o a campaign subfolder \scripts

o a global folder \scripts

NOTE: It is searched there in the same order.

If this is referred to a script packed together with an addon, the path should be "\<addon>\script.sqs".

NOTE: The <addon> means the name of the *.pbo file without extension.

Return:

• A Handle used to determine via the scriptDone command (ArmA 2) if the script has finished

• A Boolean value via the isNull command (ArmA 3) if the script has finished.

NOTE: In ArmA 3, the handle is available within the script as the magic variable _thisScript.

Example:

ArmA 2 ArmA 3

_handle = execVM "VoidFnc.sqf"; // the Boolean

waitUntil {

 if (scriptDone _handle) exitWith {true};

 false

};

_handle = execVM " VoidFnc.sqf"; // the Boolean

waitUntil {

 if (isNull _handle) exitWith {true};

 false

};

NOTE:

• The execVM starts a new thread for a script, and does not wait for it to finish.

NOTE: You can keep the program flaw until the called script finished (see above example).

• The execVM returns a handle from the called script back to the caller.

Example:

• Content of VoidFnc.sqf:

hint “Sentence1”;

• Executing the VoidFnc.sqf:

_Sentence1 = [] execVM “VoidFnc.sqf”;

hint “Sentence2”;

• Output would be:

Sentence2

Sentence1

COMMAND: spawn

Introduced in: Armed Assault (ArmA 1) v1.00

Compilation: A *.sqf script must be precompiled via the expressions:

• compile preProcessFile

• compile preprocessFileLineNumbers

Execution: It executes a SQF-syntax script.

Alternative: No

Syntax: [arguments] spawn {code}

Parameters:

• arguments (optional): Any Value passed into the script via the magic variable _this as an Array.

• code: Code

Return:

• A Handle used to determine via the scriptDone command (ArmA 2) if the script has finished

• A Boolean value via the isNull command (ArmA 3) if the script has finished.

NOTE: Since ArmA 3 v1.55, the handle is available within the script as the magic variable _thisScript.

Example:

for "_i" from 0 to 100 do {_null = _i spawn {diag_log _this;}; // Result: 51, 1, 2...49, 50, 0, 52, 53...100};

NOTE:

• The spawn adds a script precompiled into a scheduler, and does not wait for it to finish.

NOTE: When this is run depends on how the game engine is busy and how the scheduler is filled up.

• The spawn returns a handle from the called script back to the scheduler.

Example:

• Content of VoidFnc.sqf:

hint “Sentence1”;

• Executing the VoidFnc.sqf:

_Sentence1 = [] spawn compile preprocessFile "VoidFnc.sqf";

hint “Sentence2”;

• Output can be:

Sentence1

Sentence2

Sentence2

Sentence1

The scriptDone command can be used to check if the script completed:

_handle = [] spawn compile preprocessFile "VoidFnc.sqf";

waitUntil {

 if (scriptDone _handle) exitWith {true};

 false;

};

hint "Sentence2";

Output would be:

Sentence1

Sentence2

Processing Functions

Processing the value function (VFnc):

1. It is loaded as a String from a file via either the loadFile (SQS) or preprocessFile (SQF) command.

2. It is precompiled via the compile (SQF) command.

3. It is executed via the call (SQS/SQF)command.

A value function is run within the existing thread that waits for the result from the function. The value

function suspends other processes until it has completed. This means the value functions have to run faster

than void functions, and the result of the value functions has to be immediate and unambiguous.

Examples:

SQS SQF

Example 1:

/* Load, compile and call the function from another script

 and then save the result of this into the variable*/

_result = call loadFile "VFnc.sqf"

Example 1:

/* Load, compile and call the function from another script

 and then save the result of this into the variable*/

_result = call compile preprocessFile "VFnc.sqf";

Example 2:

/* Load, compile and save the function as a String

 into the global variable anywhere*/

Fnc = compile loadFile "VFnc.sqf"

/* Call the function from the global variable

 and then save the result of this into other one*/

_result = call VFnc

Example 2:

/* Load, compile and save the function as a String

 into the global variable anywhere*/

Fnc = compile preprocessFile "VFnc.sqf";

/* Call the function from the global variable

 and then save the result of this into other one*/

_result = call VFnc;

Example 3:

/* Define and save the in-line function

into the local variable within the script*/

_VFnc = {CODE}

/* Compile and call the function from the local variable

and then save the result of this into other one*/

_result = call _VFnc

Example 3:

/* Define, compile and save the in-line function

as a String into the local variable within the script*/

_VFnc = compile {CODE};

/* Call the function from the local variable

and then save the result of this into other one*/

_result = call _VFnc;

NOTE:

• You can use the special variables and commands in the value functions.

• A value function will return the result of the last statement executed.

NOTE: It does not matter whether the last statement is followed by a semicolon (;) or not.

• The result has to be saved into a variable to access it later.

In-line Function

An in-line function is that is defined and called within same script.

Example:

SQS SQF

_VFnc = {

 _val = _this select 0; // It is external parameter

 if (_val > 5) then {"bigger"} else {"smaller"};

};

_result = [4] call _VFnc; // "smaller"

_VFnc = compile {

 _val = _this select 0; // It is external parameter

 if (_val > 5) then {"bigger"} else {"smaller"};

};

_result = [4] call _VFnc; // "smaller"

Processing a void function (VdFnc):

1. It is loaded internally via exec (SQS) or execVM (SQF) command.

NOTE: In case the spawn (SQF) command, the script has to be loaded via either of:

• preprocessFile

• preprocessFileLineNumbers

2. It is compiled internally via exec (SQS) or execVM (SQF) command.

NOTE: In case the spawn (SQF) command, the script has to be compiled via the compile command.

3. It is executed via either of the exec (SQS) or execVM/spawn (SQF) command.

NOTE: In case the spawn (SQF) command, the script has to be precompiled (see above).

A void function is run in a new thread, and the existing thread does not wait for a handle from the function.

Thus the handle is not accessible to the existing thread. This prevents large and CPU intensive code from

seizing up the program flow.

The void function using either the execVM (SQF) or spawn (SQF) command will return its handle used with

scriptDone or terminate command.

NOTE: In case the exec (SQS) command, the void function returns nothing back to the caller.

Example:

Contents of the max.sqf:

_a = _this select 0; // the external parameter

_b = _this select 1; // the external parameter

if (_a > _b) then {_a} else {if (_a < _b) then {_b} else {hint “A max value does not exist.”}};

Executing the max.sqf:

// Load, compile and call the void function from another script and then save the result of this into the variable

maxValue = [3, 5] spawn compile preprocessFile "max.sqf"; // “5”

Locations

If scripts are placed in the mission/game folder, no path has to be used:

Handle = [] execVM "script.sqf";

NOTE:

• If subfolders are used, either a relative path or an absolute path has to be used:

Handle = [] execVM "scripts\script.sqf"; // the relative path

Handle = [] execVM "D:\scripts\script.sqf"; // the absolute path

• If a relative path:

o The scripts folder is accessible within both the mission editor and a compiled mission file.

o The game engine will look for the scripts folder in the mission folder and then in the game

folder. In case the game folder, this way do not work if a mission is moved to another computer

as the files are not packed with.

• If an absolute path, the scripts folder can be located anywhere.

• In the VBS:

o The double-backslash syntax is not supported:

\\LAN_PC1\DriveC\

o The basic scripts folder can be used for the mission editor:

C:\Users\%user_name%\Documents\VBS2\scripts

The location depends on the operating system and a game version. No path has to be provided

to find the scripts folder located here. This is useful for tests while a mission development. If a

mission exported is run outside of the mission editor, the scripts folder is not accessible.

The default search for scripts called with no path or with a relative path:

• Mission Editor: mission > (VBS: docs\scripts) > game root

• Singleplayer Mode: mission > (VBS: root\scripts) > game root

• Multiplayer Mode: mission > (VBS: docs\scripts) > game root

Scripts can be executed from:

• External files within a game root

• Initializations of the mission entities

• Event Handlers of the addon configurations

Statements

A statement is a construct for expressing a process.

Statement Types:

• Declaration (via initialization):

Manual Initialization Default Initialization

_Var = “”; // the local variable

Var = “”; // the global variable

private [“Var”]; // the local variable

• Expression:

o Assignment

o Input/Output:

� Command

� Control Structure

o Function Call

Expressions

An expression is a code that returns a result value.

Expression Types:

• Assignment is a redefining of a value:

_Var = “”; // the initialization

_Var = 1; // the assignment

private [“Var”]; // the initialization

Var = 1; // the assignment

• Operation is an expression including an operator and its operands:

a+b;

• Command is a function, including its arguments, e.g.: _array select 0;

_Array = [1, 2];

_Array select 0; // the item 0 has got the value of 1

• Control Structure is a conditional function:

if (CONDITION) then {CODE1} else {CODE2}

• Function Call is a function, calling a script:

Handle = [parameters] execVM “script”

Variables

A variable is a named object used to store a data. Different entities (e.g. scripts, triggers, objects and add-

ons) can read and modify data in the variables.

Rules of naming:

• A name may consist of the ASCII text: characters (a-z, A-Z), numbers (0-9) and underscore (_)

• A global name must start with a character, not a digit: e.g., GlobalVariable1

• A local name must start with underscore: e.g. _LocalVariable2, _2LocalVariable

NOTE: In VBS, validity of a name dynamically created can be checked using the isValidVarName command.

An identifier is a name of a variable:

• Capitalized: GlobalVariable; _LocalVariable

• Underscored: global_variable; _local_variable

Variables are available in certain namespaces (areas). This feature prevents the variables from conflicts.

Local variables are available within a script. It has access to them, including functions called. The local

variables cannot be used for the editor entities (units, triggers, waypoints, etc.), but they can be used in

PreProcessor EXEC commands.

NOTE:

• Some local variables predefined by the game engine (e.g. _this, _pos) may be available.

• Global variables are available within a computer where they are defined.

• The global variables can be used for the editor entities.

Public variables are available within the network. A value of a global variable gets broadcasted over the

network using the publicVariable command. After the call of this command on a server the variable will

have the same value on all clients.

NOTE: If the value of the public variable changed, it will have to be passed via this command again.

Defining

The game engine automatically defines the variables on their initialization.

Querying the undefined (uninitialized) variables returns an undefined value (nil):

scalar bool array string 0xe0ffffef - error

NOTE: The isNil command can be used to check whether a variable has been defined yet.

Initializing:

Initializing via an assignment Initializing via the private command*

_txt = ""; // It is initialized private [“txt”]; // It is initialized

*it is recommended for functions to avoid changing a value of an argument in a calling function

NOTE: Since VBS v3.7 this automatic inheritance can be overridden via the privateAll command.

Scope

A global variable initialized is accessible on the computer scope.

A local variable initialized is accessible on the same and lower scopes in a script. To read the variable

assigned at a lower scope, it must be initialized before in the scope it is supposed to be read later in:

_txt = ""; // It is initialized

if (alive player) then {_txt = "Hello";};

hint _txt; // "Hello"

private [“txt”]; // It is initialized

if (alive player) then {txt = "Hello";};

hint txt; // "Hello"

NOTE: If a local variable is initialized in a lower scope, it is not accessible to higher ones:

if (alive player) then {_txt = "Hello";}; // It is initialized at the lower scope

hint _txt; // The variable is undefined at the higher scope

Functions are considered to be on a lower scope, and share the namespace of a variable:

_fnc = {_i = 2;}; // the definition of the in-line function

_i = 0; // it will be overwritten

call _fnc; // the in-line function returns its last statement

hint format ["%1", _i]; // “2”

To prevent a function from overwriting variables, the private command should be used to initialize all

variables within the function:

_fnc = {private ["_i"]; _i = 2;}; // the definition of the in-line function

_i = 0; // it will not be overwritten

call _fnc; // the in-line function returns its last statement

hint format ["%1", _i]; // “0”

The scope of index variables used in the for-do iteration depends on the syntax of the iteration.

• the newvar syntax:

for "_i" from 0 to 2 do {CODE}; // The new “_i” is initialized within the iteration

• the specvar syntax:

_i = 1; // it is initialized before the iteration

for [{_i=0},{_i<2},{_i=_i+1}] do {CODE};

// it is initialized within the iteration

for [{_i = 0},{_i < 2},{_i=_i + 1}] do {CODE};

Destroying

Variables initialized will take up a memory.

Local variables are automatically destroyed after their script finished.

Global variables have to be manually destroyed via the nil keyword:

GlobalVar = nil;

DATA TYPES

A type of a variable specifies a type of data that the variable can contain. It is defined by the value of the

variable on an initialization. The variable’s type can be changed by redefining it with another type of data:

Var = ""; // the String data type Var = 0; // the Number data type

Data Types

Array is a list of items which can be of any data type, including other Arrays:

• In a configuration of an addon (config.cpp) and of a mission (description.ext): color [] = {1, 0, 0, 1}

• In scripts: color = [1, 0, 0, 1]

Boolean is a logic data:

• In a configuration of an addon (config.cpp) and of a mission (description.ext): 0 (false) or 1 (true).

• In scripts: false (0) or true (1).

NOTE:

• It can be returned by commands (var = alive unit1) and an operations (if (true) then{CODE})

• It can be assigned to variables (var = false or var = true)

Code is a script data that consist of commands and their parameters, and can be placed in *.sqf and *.sqs

files.

In turn, one of the commands gets passed other ones: if (CONDITION) then {CODE}.

NOTE: Literals are usually represented by text within curly braces {}. Any such code is precompiled.

Config is a handle that represents either of a config file or a class within it.

NOTE: Since VBS v3.6 the syntax and behavior of config files have changed.

• Before, a config would return configName/configProperty, since v3.6 this is preceded by

bin\config.cpp/.

• Before, a comparison with an empty config would return true, since v3.6 it will return false.

The examples below assume the "dummy" configs to be non-existent, and the missionConfigFile and

campaignConfigFile to be empty:

Example 1:

(configFile>>"dummy1")==(configFile>>"dummy2")

(missionConfigFile == campaignConfigFile)

Before v3.6: true, since v3.6: false

Example 2:

(configFile>>"CfgPatches">>"")==inheritsFrom (configFile>>"CfgPatches " select 0)

Before v3.6: true, since v3.6: false

Example 3:

str configFile

Before v3.6: "", since v3.6: "bin\config.cpp"

Example 4:

str (configFile>>"dummy")

str missionConfigFile

Before v3.6: "", since v3.6: ""

Example 5:

str ((configFile>>"CfgPatches ") select 0)

Before v3.6: "CfgPatches/access", since v3.6: "bin\config.cpp/CfgPatches/access"

Display is a screen element (see https://resources.bisimulations.com/wiki/Display).

Control is a dialog object (see https://resources.bisimulations.com/wiki/VBS:_Displays#Controls).

Editor Object is an editor entity (see https://resources.bisimulations.com/wiki/Editor_Object).

Group

Any unit belongs to its own group:

• If units are linked together, they belong to the same group.

• If a unit is not linked to anyone, it belongs to its own group.

The AI makes many decisions on an entire group, not on a unit: behavior, combat mode, and waypoints.

NOTE: Empty objects do not belong to a group.

Location is like an extended type of a marker (introduced in the ArmA 1 v1.08):

• It has a name, a side, a position, an area, and an orientation.

• It has a non-scaling map representation (icon and/or text, depending on a class).

• It requires a class definition to define basic properties.

NOTE:

o The classes are defined in bin\config.bin\CfgLocationTypes

o It can be changed, using commands.

• It can be attached to an object with all its relevant properties inherited from the object.

• It is local in a multiplayer mode, that means its properties are not synchronized

• Existing locations are set in a *.pew file of a terrain. When the terrain is exported to *.wrp file, the

island_name.hpp is also produced. This contains the location names used in the *.pew file.

NOTE: This *.hpp can be added into the config.cpp file of the terrain, using a #include directive.

NOTE: The config.cpp file of the terrain cannot be changed by commands, but it can be read.

Namespace is a container used to store variables over specific scopes.

Variables set in one namespace are not available in others, so the same name of a variable can be used in

different namespaces.

Namespace Types:

• missionNamespace: Retains content while in the same mission, or upon mission restores.

NOTE:

o Content gets lost upon mission restarts or retries.

o This is where global variables are stored.

• uiNamespace: Retains content while in game.

NOTE: Switching missions or user profiles does not reset content.

• parsingNamespace: The same scope as uiNamespace.

• profileNamespace: Retains content for the current user profile, even after restarting game.

NetObject is a special type of an object used with winches and joints.

NetObjects, like regular Objects, are serialized when the mission is saved, and when loaded re-reference the

same Winch Or Joint.

NOTE: Only available in VBS2 v1.34+.

Number (SCALAR) is a real number:

• The largest positive value is: 3.4028235e38

• The largest negative value is: -3.4028235e38

In scripts, it is possible to generate a representation of an infinite positive or negative number which

compares even larger or smaller than the above two floating point limits:

• Positive infinity 1e39 = "1.#INF"

• Negative infinity -1e39 = "-1.#INF"

Degree is a type, between 0 and 360, returned by commands like acos and asin.

Radian is a type, returned by commands like rad and deg.

Object is either of the in-game (here) or in-editor object (see Editor Object). This is a generic reference for a

man, vehicle and building. It can be animated, and have the AI associated with it.

Commands can refer to generic types, as much as specific subtypes.

_pos = getPos player;

_pos = getPos _MyHouse;

In general, the commands accept parameters of Object when a subtype is listed, but the command might

not make sense or might not work on all objects.

Types:

• A unit is a manned (AI) object that is animated.

• A vehicle is an unmanned object that is animated.

• A building is an unmanned object that can be animated.

NOTE: A joint is a connection used to couple different objects together (e.g., setDriveOrientation).

Script is a handle of operations called by the spawn/execVM commands.

When a script is done, the handle will contain <NULL-script> and the scriptDone command will return true.

The script can be terminated by using its handle with the terminate command.

If the game engine does not contain a null-value, this can be created by calling an empty function:

_hdlNull = [0] execVM {};

This handle will return true with the scriptDone, and could then be used to populate an array, for example,

so that any type-specific test would not fail:

_hdlNull = [0] execVM {};

_handles = [_hdlNull, _hdlNull, _hdlNull];

_sqlHdl1 = execVM "script.sqf";

_handles set [1,_sqlHdl1]; // Now the 2
nd

 element contains a real handle

_done = {scriptDone _x} count _handles; // run a type-specific command

Side

Types:

• West (BLUFOR) is predefined variable for entities that have the western side assigned.

• East (OPFOR) is predefined variable for entities that have the eastern side assigned.

• Resistance (Independent) is predefined variable for entities that have the resistance side

(Independent/Guerrilla) assigned.

• Civilian (Civilian) is predefined variable for entities that have the civilian side assigned: people,

empty vehicles, objects and dead of any side.

• Unknown is predefined variable for entities that have no side assigned.

NOTE: It seems to only apply to empty groups.

• sideLogic (Game Logics)

String

A string of the ASCII characters enclosed by:

• single quotes (‘OFP’) for the Operation Flashpoint series

• double-quotes (“ArmA”) for other of the ArmA series

Structured Text

See Structured Text

Target is an object interested for another one. The targets are internally used by certain commands to keep

track of specific entities.

Special Types are data, which are not really ones, as they do not describe any value, e.g.:

• Any Value: the variable may to have any data type (excluding magic ones).

• Anything: the variable may to have any data type or nothing.

• Nothing: the expression has no value. It cannot be assigned to a variable. It exists because each

expression needs to return a value and needs to have a type.

• objNull: A non-existing object. This value is not equal to anything, including itself.

Syntactical Helper Types are used for syntactically richer expressions than unary/binary operators do, e.g.:

• If is used in the if-then construct.

• While is used in the while-do construct.

• Switch is used in the switch construct.

• For is used in the for-do Iteration.

OPERATORS

An operator is a command that provide either of a basic mathematical or logical operation.

Operator Types:

• A unary operator requires one operand: operator [operand1]

• A binary operator requires two operands: [operand1] operator [operand2]:

An operand is a value or an expression given to an operator.

NOTE:

• The Assignment operator (=) assigns a value to a variable: variable = value.

• There does not exist any other assignment operator like C++ one.

Arithmetic Operators:

• The arithmetic operators can evaluate the different values

• The operand types for: Number, String, and Array.

• The arithmetic operators return a value of the Number type.

Unary Arithmetic Operators

Operator Name Example

+ Copy (for Arrays) +Array

- Negation -a

Binary Arithmetic Operators

Operator Name Example

+ Addition (for Numbers); Concatenation (for Strings or Arrays) a + b

- Subtraction (for Numbers) a - b

* Multiplication (for Numbers) a * b

/ Division (for Numbers) a / b

%; mod Modulo (for Numbers) a % b; a mod b

^ Raise to the power of (for Numbers) a ^ b

Modulo returns the remainder of the division (see Math Commands).

Array Operations:

• Operands of an array operation must be a type of the Array.

• The array operation returns a value of the Array type.

Unary Array Operations

Operator Name Example

+ Copy +Array

The Array can be assigned:

• By reference: if you assign array1 to array2 and change array1 afterwards also array2 is changed:

array1 = [1, 2];

array2 = array1;

array1 set [0, 5]; // array1 = [5, 2], and array2 = [5 ,2]

• By copy: if you assign array1 to array2 and change array1 afterwards the array2 is not changed:

array1 = [1, 2];

array2 = +array1;

array1 set [0, 5]; // array1 = [5, 2], but array2 = [1, 2]

Binary Array Operations

Operator Name Example

+ Concatenation Array1 + Array2

- Removal Array1 - Array2

• plus (+) attaches second operand on the end of first one:

array1 = [1, “two”];

array2 = [3, “two”, 4];

array3 = array1 + array2; // array3 = [1, “two”, 3, “two”, 4]

• minus (-) extracts all elements of second operand from first one by a type and a value:

array1 = [1, “two”, 3, “two”, 4];

array2 = [“two”, 3];

array3 = array1 - array2; // array3 = [1, 4]

String Operations:

• Operands of a string operation must be a type of the String.

• The string operation returns a value of the String type.

Binary String Operation

Operator Name Example

+ Concatenation string1 + string2

• “+” attaches second operand on the end of first one:

string1 = "Hello, ";

string2 = "World!";

string3 = string1 + string2; // string3 = "Hello, World!"

NOTE: There are not the unary string operations.

Logical Operators:

• The logical operators evaluate the Boolean values.

• Operands of a logical operator must be a type of the Boolean.

• The logical operators return a value of the Boolean type.

Unary Logical Operators

Operator Name Example

!; not Not !a; not a

NOTE: This operator returns the inverse value: if the false is, then it returns the true and vice versa.

Binary Logical Operators

Operator Name Example

&&; and And a && b; a and b

||; or Or a || b; a or b

<>; xor Xor a <> b; a xor b

• AND returns the true if both operands are the true

• OR returns the true if one or both operands are the true

• XOR returns the true if either of the operands is the true

The NOR and NAND operators can be simulated by the basic operators.

Combined logical operators

Operator Name Example

- OR !(a || b)

- NAND !(a && b)

• NOR returns the true if both operands are the false

• NAND returns the true if one or both operands are the false

Comparison Operators:

• Comparison operators compare two values.

• Operands of a comparison operator must be one of the types:

Number, Side, String, Object, Group, Structured Text, Config, Display, and Control

• The comparison operator returns the Boolean value:

true if the comparison matches; false if not.

Comparison Operators

Operator Name Example

== Equal a == b

!= Not Equal A != b

< Less Than a < b

> Greater Than a > b

<= Less Or Equal a <= b

>= Greater Or Equal a >= b

NOTE: You cannot compare Boolean values:

• Comparing a Boolean value with true is the same as the value itself: a == true the same as a == a

• Comparing a Boolean value with false is the same as the inverse value: a == false the same as a ==!a

CONTROL STRUCTURES

A control structure is a statement used to control a program flow under certain conditions.

NOTE: Here, the control structures have no handling compared to other statements. This is different from

most imperative programming languages (like C), where control structures are implemented in the

grammar. The controlling done by them is implemented by accepting code as an argument.

The complex control structures like the while-do are implemented using helper types, like the while type.

A block is a set of statements grouped together within curly braces { }.

NOTE: The block can be standalone, executable with calling command, or belong to a control structure.

If-Then Structure

The if-then structure defines code executed if a condition is true:

if (CONDITION) then {CODE}

Else-Alternative

The else-alternative defines code executed when the condition is false:

if (CONDITION) then {CODE_TRUE;} else {CODE_FALSE;}

NOTE: The CODE_FALSE is executed when CONDITION is false.

The if-then structure can also be used to assign conditional values to a variable:

state = if (alive player) then {true} else {false}; // state has the true if player is alive, otherwise the false

Since the “if” is a statement itself, it can be nested:

if (CONDITION1) then {

 if (CONDITION2) then{CODE1} else {CODE2};

}

else {

 if (CONDITION3) then{CODE3} else {CODE4};

};

Switch-Do Structure

The switch-do structure defines a code executed depending on a conditional value:

switch (CONDITION) do {case VALUE1: {CODE1}; case VALUE2: {CODE2}; default {CODE3};};

NOTE:

• The default block can be used to catch values that are not defined in the case definitions.

• There is no a colon (:) after the default tag.

NOTE: The switch-do structure can also be used to assign conditional values to a variable:

_color = switch (side player) do {case west: {"ColorBlue"}; case east: {"ColorRed"};};

Iterations

Iterations are used to execute the same code for specific or infinite number of times.

WaitUntil-Iteration

The waitUntil iteration repeats a code if a condition is false:

waitUntil {CODE; if (CONDITION) exitWith {true;}; false;};

NOTE: Here, the CONDITION is a return value of the CODE executed.

The process:

1. Execute the code.

2. Evaluate the condition: false - go back to the execution; true - quit the iteration, and then destroy it.

NOTE:

• If a condition is true on the start of the iteration it will quit after single iteration.

• Since the condition is tested after the execution, the iteration runs one or more times.

• The iteration can be only used within scheduled environment. It will resume on the next step.

_count = 0;

waitUntil {_count = _count + 1; _count < 2}

While-Iteration

The while iteration repeats a code if a condition is true.

while {CONDITION} do {CODE}

NOTE: In the while iteration, the curly braces {} are used for the condition instead of parentheses ().

The process:

1. Evaluate the condition: true - go on to the block; false - skip the block.

2. If true, execute the code.

NOTE: If the condition is false on the start of the iteration, the code will never be executed.

3. Go back on to the condition.

NOTE:

• Since the condition is tested before an execution, it executes zero or more times. It will resume on

the next step.

• The iteration can run up to 10,000 iterations if started from within a non-scheduled environment.

_count = 0;

while {_count < 2} do {_count = _count + 1;}

For-Iteration

The for-iteration repeats a code for a specific number of times.

NOTE: This is blocking and atomic in execution. It will not terminate or be interrupted after a certain time or

after a number of fixed iterations (unless there is unexpected failure of the condition). This differs from

while-iteration, and has the potential to freeze up a program flow.

for [{BEGIN}, {CONDITION}, {STEP}] do {CODE}

Parameters:

• BEGIN is an initialization of a start value before the iteration starts; part of parent and global

variable spaces (inherits parent's local variables and is able to write to global variable space).

• CONDITION is evaluated before iteration.

• STEP is a degree of increasing or decreasing (with a negative value) the start value.

The process:

1. Initialize the start value

2. Compare the start value: true - go on to the block; false - skip the block.

3. If true, execute the code.

NOTE: If a condition is false on start of the iteration, the code will never be executed.

4. Increase or decrease the start value.

5. Go back on to the condition.

Example:

for [{_i=0}, {_i<10}, {_i=_i+1}] do {hint “_i”;}; // Displaying the numbers from 0 to 9

There is an alternate syntax of the for-do iteration that improves the performance of the iteration:

for "VAR_INIT" from STAR_TVALUE to END_VALUE do {CODE}

NOTE:

• VAR_INIT is the variable used to count the iteration; not part of parent's variable space nor part of

global variable space; variables will not persist outside this iteration.

• START_VALUE is a value assigned to the variable before the iteration starts.

• END_VALUE is a value until the counter is incremented/decremented.

The process:

1. Initialize the variable with START_VALUE

2. Compare the START_VALUE to the END_VALUE. If this is deferent to, the code is executed:

• If START_VALUE is less than END_VALUE, the VAR_INIT is incremented by 1

• If START_VALUE is greater than END_VALUE, the VAR_INIT is decremented by 1

3. Go back to compare.

Example:

for "_i" from 0 to 9 step 1 do {hint “_i”;}; // Displaying the numbers 0 to 9

NOTE: The default step is 1, but you can set the value at will:

for "VAR_INIT" from START_VALUE to END_VALUE step STEP_VALUE do {CODE}

NOTE: The STEP_VALUE defines the degree by which the start variable is incremented/decremented.

ForEach-Iteration

The forEach-iteration repeats a code for every item of an array:

{CODE} forEach ARRAY

NOTE: The block is executed as long as a number of the items.

NOTE: You may use the special variable _x within the block that references to the current item of the array.

_array = [unit1, unit2, unit3];

{_x setDamage 1;} forEach _array;

NOTE: The special variable _forEachIndex can also be used instead of the _x.

NOTE: You can nest the forEach iteration so that a _x value of an outer one is available within an inner one:

{

 _unit = _x; // it is assigned to a local variable

 {

 hint format ["Unit: %1, Weapons: %2", _unit, _x]

 } forEach (weapons _x);

} forEach allUnits;

NOTE: Each the iteration will be executed within one frame.

Count-Iteration

It is possible to use the count command instead of the forEach.

{CODE} count ARRAY

The block is executed as long as the count of the ARRAY.

The value returned by the command is a count of return values that equal to true:

_array = [unit1, unit2, unit3];

{_x setDamage 1; false} count _array;

NOTE: You can nest the count iteration so that a _x value of an outer one is available within an inner one:

{

 _unit = _x;

 {

 hint format ["Unit: %1, Weapon: %2",_unit,_x]; false

 } count (weapons _x);

} count allUnits;

NOTE: Each the iteration will be executed within one frame.

NOTE: The control structures (with exception of count one) return a value of the last expression evaluated.

Therefore, there must not be a semicolon (;) after the last expression, otherwise Nothing is returned.

_ret = if (CONDITION) then {VALUE1} else {VALUE2}; // return VALUE1or VALUE2

COMMON ERRORS

A compiler can generate some error messages in a game.

Generic Error in Expression: the data type that an operator is expecting does not match:

String = "String" + 42

Invalid Number in Expression: the statement is incomplete or malformed:

Number = 2 + 3 +

Type Something Expected Nothing: the statement is incomplete, malformed, or non-existent.

Uncompleted Statement Malformed Statement Non-Existent Statement

var= ; 1 = 2 1 + 2 * 2

Type String Expected Code: a syntax error contained in a block as a piece of another statement.

NOTE: The error will be identified as the piece of the original statement, not on the line where it occurs.

For instance, if there is a syntax error in a then-block or an else-block of an if-statement, the error will be

identified in front of the then keyword or else keyword, respectively.

Unknown Operator: the game engine attempted to parse something as an operator, but could not find the

given symbol:

string = "Hello, " concatenation "World!";

There are several reasons why this might happen:

• If a script uses a new operator, and is run on an old version of the game engine.

• When executing a formatted string, where a variable inside the statement is undefined:

_var = ;

hint format ["a = %1", _var]; // a = scalar bool array string 0xfcfffef

The game engine interprets a scalar as an uninitialized variable, and the parser expects an

operator as the next token. The bool cannot be found in the list of operators (since it is not one).

scalar bool array string 0xe0ffffef: the variable does not exist.

if (format ["%1", _var] == "scalar bool array string 0xe0ffffef") then [{"undefined"},{"defined"}];

NOTE: The parser can point you to a line of correct code as an error, but the actual error is beneath that.

for "_i" from 0 to 1 do {

 _str = format ["string"

}; // The error message “Type String Expected Code”

In the example above, the error will be shown to the left of the do keyword (#do), but this is caused further.

NOTE: This applies to the SQF syntax, not to the SQS.

ADJUSTING (DEBUGGING)

Debugging is finding and fixing errors in a program.

Error Types:

• compile-time errors found by the compiler

• link-time errors found by the linker

• run-time errors (logic errors) found while the program is run.

NOTE: Generally, compile-time errors are easier to find and fix than link-time errors, and link-time errors

are often easier to find and fix than run-time errors (logic errors).

To see error messages you can use:

• the *.RPT file (introduced in the Armed Assault v1.00): e.g.,

C:\Documents and Settings\organizer\Local Settings\Application Data\ArmA\arma.RPT

To use the file create a shortcut of it on the Desktop.

• the -showscripterrors switch (introduced in the Armed Assault v1.00).

To set the switch:

1. Create the game shortcut on the Desktop.

2. One-click RMB on the shortcut.

3. Choose Properties item from the context menu.

4. On Tab label, in the Object field, add the switch –showscripterrors:

"C:\Program Files\Bohemia Interactive\ArmA 2\arma2.exe" -showscripterrors

5. Click the Apply button.

6. Click the OK button.

Error messages appear at the top of the screen when the game engine loads the line of code but is unable

to interpret this. The message displays the basic information about the error occurred.

NOTE: Actual error may be on another line.

Release: 24.05.2016

Update: 07.05.2017

Publisher: http://vied-arma.ucoz.com/

