
Author: Master

ARMA 2 CONVERSATION SYSTEM

The conversation system in ArmA 2 has replaced the description.ext approach.

Main advantages:

• The system reacts on the sentence to start.

• Conversation flows through the channel:

o direct for unit-to-unit

o via radio for team members etc.

• Possibility to create dynamic conversations.

• FSM syntax allows editing.

• The same conversation topic has to be added to each of the participants.

• The conversation starts with the sentence which one of the participants says to another.

• The conversation can be controlled by SQF-scripts: FSMs and event handlers assigned to each

participant.

• After a participant receives a sentence, its script reacts to its ID.

Adding the conversation topic to a participant:

participant kbAddTopic [“topic name”, “topic config”, “FSM”, “event handler”]

Where:

• topic name - the title (String)

• topic config - the topic configuration (.bikb) (String)

• FSM - the Finite State Machine (.fsm) (String) – for unit controlled by AI

• event handler - the script (.sqf) (String or code) - for unit controlled by a player

Bohemia Interactive Knowledge Base (.bikb) file was used to store an AI unit's memory of what it has seen.

Now the file is used to store the text and sound samples of the sentences for the conversation topic.

NOTE: This is similar to the class cfgSounds and class cfgRadio in description.ext.

Example:

class Sentences {

class say1 {

text = "Hello unit1.";

speech[] = {"\Sound\unit2_01.ogg"};

class Arguments {};

};

class say2 {

text = "Hello unit2.";

speech[] = {"\Sound\unit1_01.ogg"};

class Arguments {};

}

};

class Arguments{};

class Special{};

startWithVocal[] = {hour};

startWithConsonant[] = {europe, university}

Where:

• text - the text sample of a sentence.

NOTE:

o Using stringtable.xml, type “$STR_ClassName” (with the dollar sign ($) followed by

capitalized prefix STR_).

o Place your stringtable.xml of the mission folder. If simulation engine cannot find the string

ID in the string table of the mission then it looks in the core string table.

• speech – the sound sample of a sentence.

NOTE: You can use the sentences without the sound: speech[] = {""}.

• Arguments and Special classes, you can safely ignore these.

• startWithVocal and startWithConsonant arrays, you can safely ignore these.

NOTE:

• All dubbing sound files are packed in dubbing.pbo addon.

• Sentences are defined in *.bikb files located in subfolder \kb within a mission folder.

• FSM is executed every time an AI unit receives a sentence, so you need to check for _sentenceID in

separate conditions right at the start.

• You can open as many conversation menus as you want in player's event-handler code (most

commonly an *.sqf file). In the FSM, you are just checking for the interrupted event. If more of

those can occur in one topic, you can check which sentence was said last via kbWasSaid command.

• kbTell command always works only locally

Class Interrupted

The quick action menu on the HUD can be closed via Backspace key. If you want to handle this event, you

have to add new class Interrupted into the class Sentences.

class Sentences {

// Other classes

 class Interrupted {

 text = "";

 speech[] = {""};

 class Arguments {};

 };

};

It can be used as a default _sentenceId in the script.

Scripts

The FSM and event handler parameters are optional in kbAddTopic definition.

While the unit receives a sentence, the engine defines who the unit controller is:

• If it is controlled by AI, the FSM is executed.

• If it is controlled by player, the event handler is executed.

NOTE: If you are making a multiplayer mission and the unit is playable, you will want to use both the FSM

and the event handler together.

The default variables of FSMs and event handlers:

• _this – the receiver of the sentence.

• _from – the sender of the sentence.

• _sentenceId – the class of the sentence that the receiver is reacting to.

• _topic - the topic name of the conversation.

FSM

FSM stand for Finite-State Machine system. FSM is executed only once after each received sentence.

Event Handler

Event handler is executed:

• if it receives a sentence

• if the player points at an interlocutor and is close enough to start a conversation.

NOTE: This is not standard event handler.

NOTE: You cannot use either sleep or waitUntil command in the FSM as they are precompiled.

If you need to add a delay into the code, you have to start a new script scope via spawn command.

NOTE: You can use the default variable _topic instead of the topic name (String) in the *.fsm and *.sgf files

of the topic. Use the topic name (String) in the other scripts.

Non-FSM control

You can control a conversation via any script without FSM and event handler.

Example:

unit1 kbAddTopic ["dialog", "kb\ dialog.bikb"];

unit2 kbAddTopic ["dialog", "kb\ dialog.bikb"];

unit1 kbTell [unit2, "dialog", "dialog_u1_1"];

waitUntil { unit1 kbWasSaid [unit2, "dialog", "dialog_u1_1", 3]};

unit2kbTell [unit1, "dialog", " dialog_u2_1"];

waitUntil {unit2 kbWasSaid [unit1, "dialog", "dialog_u2_1", 3]};

//Conversation ended.

Creating Conversation

In the mission editor:

1. Create a character controlled by a player and call it as “unit1”.

2. Create other character and call it as “unit2”.

3. Save mission, go to and open the mission folder.

In the mission folder:

4. Create the file stringtable.xml:
<?xml version="1.0" encoding="utf-8"?>

<Project name="Arma2">

 <Package name="Missions">

 <Container name="Conversations">

 <Container name="ConvActMenu">

 <Key ID="conv_actmenu_say">

 <English>Say</English>

 </Key>

 <Key ID="conv_actmenu_silent">

 <English>Keep silent</English>

 </Key>

 <Key ID="conv_actmenu_continue">

 <English>Continue</English>

 </Key>

 <Key ID="conv_actmenu_discontinue">

 <English>Discontinue</English>

 </Key>

 <Key ID="conv_actmenu_yes">

 <English>Yes</English>

 </Key>

 <Key ID="conv_actmenu_no">

 <English>No</English>

 </Key>

 </Container>

 <Container name="Dialog">

 <Key ID="str_conv_unit1_sent_1">

 <English>Hi! How are you?</English>

 </Key>

 <Key ID="str_conv_unit2_sent_2">

 <English>Hi! All right!</English>

 </Key>

 <Key ID="str_conv_unit1_sent_3">

 <English>You'll watch football today?</English>

 </Key>

 <Key ID="str_conv_unit2_sent_4">

 <English>Yes! And you?</English>

 </Key>

 <Key ID="str_conv_unit1_alter_yes">

 <English>Yes, I'll watch football. Goodbye.</English>

 </Key>

 <Key ID="str_conv_unit1_alter_no">

 <English>No, I will not watch football. Goodbye.</English>

 </Key>

 <Key ID="str_conv_unit2_confirm">

 <English>Good luck to your team. Goodbye.</English>

 </Key>

 <Key ID="str_conv_unit2_cancel">

 <English>Goodbye.</English>

 </Key>

 </Container>

 </Container>

 </Package>

</Project>

NOTE: You can only use languages supported by a product.

To see the languages supported:

• Refer to official game site

• Unpack the file languages.pbo and open stringtable.xml (as example).

5. Create the folder “kb”.

In the folder kb:

6. Create the file conv.bikb:
class Sentences {

 class conv_unit1_sent_1 {

 text = "$STR_conv_unit1_sent_1";

 speech[] = {""};

 class Arguments {};

 };

 class conv_unit2_sent_2 {

 text = "$STR_conv_unit2_sent_2";

 speech[] = {""};

 class Arguments {};

 };

 class conv_unit1_sent_3 {

 text = "$STR_conv_unit1_sent_3";

 speech[] = {""};

 class Arguments {};

 };

 class conv_unit2_sent_4 {

 text = "$STR_conv_unit2_sent_4";

 speech[] = {""};

 class Arguments {};

 };

 class conv_unit1_alter_yes {

 text = "$STR_conv_unit1_alter_yes";

 speech[] = {""};

 class Arguments {};

 };

 class conv_unit1_alter_no {

 text = "$STR_conv_unit1_alter_no";

 speech[] = {""};

 class Arguments {};

 };

 class conv_unit2_confirm {

 text = "$STR_conv_unit2_confirm";

 speech[] = {""};

 class Arguments {};

 };

 class conv_unit2_cancel {

 text = "$STR_conv_unit2_cancel";

 speech[] = {""};

 class Arguments {};

 };

 class Interrupted {

 text = "";

 speech[] = {""};

 class Arguments {};

 };

};

class Arguments{};

class Special{};

startWithVocal[] = {hour};

startWithConsonant[] = {europe, university};

7. Create the file conv_unit1.sqf (for unit1 controlled by a player):
// Collect actions (if any) to the quick action menu via the BIS_convMenu array.

// Parameters : <menu_item> (String), _topic (String), _sentenceid (String).

BIS_convMenu = [];

// Check: if the player is pointing at the interlocutor

// Check: if the player says to the interlocutor

// Check: if the player said to the interlocutor

if (_from == VIED_Hooker1 && _sentenceId == "" && !(_this kbWasSaid [_from, _topic, "conv_unit1_sent_1", 120])) then

{

 // Add the sentence to BIS_convMenu for the player

 BIS_convMenu = BIS_convMenu + [[localize "conv_actmenu_say", _topic, "conv_unit1_sent_1", []]];

 BIS_convMenu = BIS_convMenu + [[localize "conv_actmenu_silent", _topic, "Interrupted", []]];

};

switch (_sentenceId) do

{

 case "conv_unit2_sent_2":

 {

 BIS_convMenu = BIS_convMenu + [[localize " conv_actmenu_continue", _topic, "conv_unit1_sent_3",

[]]];

 BIS_convMenu = BIS_convMenu + [[localize " conv_actmenu_discontinue ", _topic, "Interrupted", []]];

 };

 case "conv_unit2_sent_4":

 {

 BIS_convMenu = BIS_convMenu + [[localize "conv_actmenu_yes", _topic, "conv_unit1_alter_yes", []]];

 BIS_convMenu = BIS_convMenu + [[localize "conv_actmenu_no", _topic, "conv_unit1_alter_no", []]];

 };

 default {};

};

// Return the result to the scope

BIS_convMenu;

8. Create the file conv_unit2.sqf (for unit2 controlled by an artificial intelligence (AI)):
// Collect actions (if any) to the quick action menu via the BIS_convMenu array.

// Parameters : <menu_item> (String), _topic (String), _sentenceid (String).

BIS_convMenu = [];

switch (_sentenceId) do

{

 case "conv_unit1_sent_1":

 {

 _this kbtell [_from, _topic,"conv_unit2_sent_2"];

 };

 case "conv_unit1_sent_3":

 {

 _this kbtell [_from, _topic,"conv_unit2_sent_4"];

 };

 case "conv_unit1_alter_yes":

 {

 _this kbtell [_from, _topic,"conv_unit2_confirm"];

 };

 case "conv_unit1_alter_no":

 {

 _this kbtell [_from, _topic,"conv_unit2_cancel"];

 };

 default {};

};

// Return the result to the scope

BIS_convMenu;

9. Create the file conv_unit1.fsm (for unit1):

FSM description for unit1:

NOTE: This FSM works when the unit1 is controlled by AI.

Name Start

Object type Finite State

State type Start State

InitCode

PreCondition

Name Reset

Object type Transition Condition

Condition type True Condition

Priority 0

Condition true

Action

PreCondition

Name End

Object type Finite State

State type End State

InitCode

PreCondition

NOTE: Since FSM loops, it needs to have the End state for resetting the loop in idle through Reset condition.

Start

End

Interrupted

NO

Reset

Sent2

Sent4

Name Sent2

Object type Transition Condition

Condition type Condition

Priority 1

Condition (_sentenceId in ["conv_unit2_sent_2"]);

Action

PreCondition

Name Interrupted

Object type Finite State

State type End State

InitCode _this kbTell [_from, _topic, "Interrupted"];

PreCondition

Name Sent4

Object type Transition Condition

Condition type Condition

Priority 1

Condition (_sentenceId in ["conv_unit2_sent_4"]);

Action

PreCondition

Name No

Object type Finite State

State type End State

InitCode _this kbTell [_from, _topic, "conv_unit1_alter_no"];

PreCondition

10. Create the file conv_unit2.fsm for unit2:

FSM description for unit2:

Name Start

Object type Finite State

State type Start State

InitCode

PreCondition

Name Reset

Object type Transition Condition

Condition type True Condition

Priority 0

Condition true

Action

PreCondition

Name End

Object type Finite State

State type End State

InitCode

PreCondition

NOTE: Since FSM loops, it needs to have the End state for resetting the loop in idle through Reset condition.

Start

End

Confirm

Cancel

Reset

Yes

No

Interrupted

Sent1 Sent3

Sent4 Sent2

Name Interrupted

Object type Transition Condition

Condition type Condition

Priority 1

Condition (_sentenceId in ["Interrupted"]);

Action

PreCondition

Name Sent1

Object type Transition Condition

Condition type Condition

Priority 1

Condition (_sentenceId in ["conv_unit1_sent_1"]);

Action

PreCondition

Name Sent2

Object type Finite State

State type End State

InitCode _this kbTell [_from, _topic, "conv_unit2_sent_2"];

PreCondition

Name Sent3

Object type Transition Condition

Condition type Condition

Priority 1

Condition (_sentenceId in ["conv_unit1_sent_3"]);

Action

PreCondition

Name Sent4

Object type Finite State

State type End State

InitCode _this kbTell [_from, _topic, "conv_unit2_sent_4"];

PreCondition

Name Yes

Object type Transition Condition

Condition type Condition

Priority 1

Condition (_sentenceId in ["conv_unit1_alter_yes"]);

Action

PreCondition

Name Confirm

Object type Finite State

State type End State

InitCode _this kbTell [_from, _topic, "conv_unit2_confirm"];

PreCondition

Name No

Object type Transition Condition

Condition type Condition

Priority 1

Condition (_sentenceId in ["conv_unit1_alter_no"]);

Action

PreCondition

Name Cancel

Object type Finite State

State type End State

InitCode _this kbTell [_from, _topic, "conv_unit2_cancel"];

PreCondition

In the mission folder:

11. Create the file init.sqf (as instance).

In the file init.sqf

12. Add conversation topic to both the unit1 and unit2.
unit1 kbAddTopic ["Dialog", "conv.bikb", "conv_unit1.fsm", {call compile preprocessFileLineNumbers "conv_unit1.sqf"}]

unit2 kbAddTopic ["Dialog", "conv.bikb", "conv_unit2.fsm", {call compile preprocessFileLineNumbers "conv_unit2.sqf"}]

NOTE:

• You can use any a script for this purpose.

• You can add a topic to any unit:

{if (side _x == Civilian) then {_x kbAddTopic [...]}} forEach allUnits

How to use

In mission editor:

1. Start the preview

2. Go to the character unit2 so that the icon “Talk to” appears.

3. Scroll the mouse wheel.

4. In the quick action menu, choose “Say” item (“1” key).

You have to see the following sentences:

unit1: Hi! How are you?

unit2: Hi! All right!

5. The quick action menu appears.

6. In the quick action menu, choose “Continue” item (“1” key).

You have to see the following sentences:

unit1: You'll watch football today?

unit2: Yes! And you?

7. The quick action menu appears.

8. In the quick action menu, choose “Yes” item (“1” key).

You have to see the following sentences:

unit1: Yes, I'll watch football. Goodbye.

unit2: Good luck to your team. Goodbye.

Release: 2015.06.05

Publisher: http://vied-arma.ucoz.com/

